

Benoît Rousseau, Ph.D.

The Institute for Perception

Richmond, USA <u>Benoit.Rousseau@IFPress.com</u> www.ifpress.com

Background

Why Discrimination Testing?

- Measure the size of the difference between products
- Two main objectives
 - Prove products are different
 - "New and improved", "Fresher, crisper taste"

- Prove products are similar
 - Ingredient change, new supplier, government regulation (e.g., salt or sugar reduction)

R

Case Illustration 1

A company manufactures lemon based beverages

 A change of sweetener supplier requires an investigation using discrimination testing (triangle test)

"Which one is different?"

20 panelists each performing one triangle test

 Binomial test: 11 correct out of 20 needed to be significant at p=0.05

• Important project \rightarrow Repeat the research two more times

More confidence that no difference exists

vever.

Case Illustration 1 (Cont.)

• Can the team recommend the change?

Case Illustration 2

Comparison of apple juices of different concentration

- Two experimental protocols
 - Discrimination: Tetrad (N=228)

"Group the four samples into two groups of two identical samples"

<u>Hedonic</u>: Paired preference (N=104)

"Which sample do you prefer?"

Case Illustration 2 (Cont.)

Ishii, O'Mahony, Rousseau (2014)

Results

Number of tests correct needed for significance at 5%: 89/228

- How can consumers be unable to discriminate the samples but yet have a preference?
- This very common situation is linked to sample size and size of the underlying difference

The Need for Information on Consumer Relevance

 When studying the similarity of two products, provided that the sample size is large enough, a significant result will always be found when using a discrimination test

What is the optimal sample size?
12? 20? 100? 1,000?

 Optimal sample size can only be set if <u>the size of the relevant</u> <u>difference</u> is known

2-AFC 3-AFC Duo-trio Triangle

5 Factors Relationship (2)

Scenario 2

- Size of the difference: 86% correct in a 2-AFC (d' of 1.5)
- Power: 80% chance of detecting the difference
- > α level: 5%
- Sample size needed

Consumer Rejection Threshold

Consumer Rejection Threshold

- Measuring 'Consumer rejection threshold' is a way at getting at the relevant $\boldsymbol{\delta}$
- Concept introduced by Prescott et al. (2005) for cork taint in white wine

- This approach requires a way to increase systematically a product defect
- More difficult to use in case of attribute exhibiting satiety

Approaches to set $\boldsymbol{\delta}$

Relating Trained Panel and Consumers' Sensitivities

Relating Trained and Naïve Subjects Sensitivities

 Trained panel testing more efficient and cost effective than consumer panel testing

• Through training, subjects' sensitivity can improve

• Higher sensitivity increases power

Illustration with Ice Cream Products

- Study by Ishii, Kawaguchi, O'Mahony and Rousseau (2007)
- Conducted with seven different pairs of vanilla ice cream samples varying on various dimensions (flavor, fat content, texture, ...)
- Sample pairs evaluated both by the trained and consumer panels
- Protocol used: same-different test for both panels

 d' values calculated for each panel and for each pair of samples

Experimental Results

 This relationship allows the estimation of the discrimination level that will be exhibited by consumers based on trained panel data

Using Preference Tests

Preference Test Approach Example

150 consumers

• 12 different pairs of products

Consumers: Paired preference

"Which sample do you prefer?"

Internal panel: Tetrad

"Put the 4 samples in two groups of 2 identical samples"

Internal d'vs. Consumers' Preference Results

- Tetrad test, α =5%, Power=80%, δ =1.2 \rightarrow N=39

Using the Same-Different Test

Response Bias: τ Criterion

Are the two apples the same or different?

Example

• 300 consumers

• 4 products

(200)

• 6 pairs

• Protocol: Same-different

	"Same"	"Diff."
Same		
Diff.		

d', τ

Consumers Same-Different Data

Pair	" <i>D"</i> /S	"S"/S	"D"/D	"S"/D	d'	τ
A vs. B	85	65	90	60	0.60	0.81
C vs. D	87	63	89	61	0.38	0.78
A vs. C	86	64	104	46	1.21	0.80
B vs. D	87	63	99	51	0.97	0.78
A vs. D	84	66	111	39	1.54	0.82
B vs. C	86	64	92	58	0.66	0.80
Average						

0.80 corresponds to the consumer threshold for "difference"

The program's risk profile can then be established

♦ Tetrad test, α =5%, Power=80%, δ=0.80 → N=140

Conclusions

SenseAsia 2014 The Asian Sensory and Consumer Research Symposium II–I3 May, 2014 • SingEx, Singapore

Sensory Discrimination Testing

and Consumer Relevance

Thank You For Your Attention Any Questions?

www.ifpress.com

Benoît Rousseau, Ph.D.

Benoit.Rousseau@IFPress.com (530) 753 2231 _{29/29}

The Institute for Perception