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Abstract 

Multivariate analyses are commonly used to study differences among items in a multidimensional space and to relate these 

findings to hedonic assessments of the same items.  But there are numerous methods in use and the purpose of this paper is to review 

these methods from a process standpoint.  Specifically, this paper considers the process assumptions behind several of the popular 

methods for multivariate mapping of hedonic data and argues that experimenters should consider how their data arise so that they can 

correctly interpret their findings.  Among the methods considered in this paper are models based on the hedonic continuum, internal 

and external preference mapping, and deterministic and probabilistic unfolding of preference and liking. 

 

Practical Applications 

Multivariate mapping of hedonic data has led to improved consumer products and a better understanding of consumer liking 

and choice.  In this paper, practitioners will find guidance in their choice of methods through a consideration of the processes that 

generate their data.  Without a process-based perspective, practitioners will not be able to optimally interpret results from the wide 

variety of available multivariate mapping methods. 
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Introduction 

 

Improved access to multivariate analysis software has 

made it relatively easy to conduct multivariate mapping of 

hedonic data.  But correct interpretation of results depends very 

much on the user’s understanding of the models underlying the 

mapping techniques.  Since models reflect the thinking of their 

inventors, and since we temporarily accept that thinking when we 

apply mapping techniques, it is valuable to consider what those 

perspectives might be.  Specifically, multivariate mapping 

methods are designed to uncover a spatial representation of data 

and there are a virtually unlimited number of possible 

representations.  Since an experimenter generally does not know 

the underlying spatial structure, there is not always an a priori 

way of knowing how badly distorted the resulting map is relative 

to the “true” picture.  As we show later in this paper, tests of 

goodness of fit may not be sufficient to avoid this problem.  The 

best strategy is to consider the processes that likely underlie the 

data generation and to use modeling approaches that are as 

faithful as possible to those processes.  Otherwise, one could 

obtain confusing or conflicting results with limited applicability 

and generalization. 

 

In this paper we review the processes behind a number 

of different methods of modeling hedonic data typically obtained 

from product testing - the guiding principle of this paper is to 

consider alternative methods according to the various 

mechanisms through which the hedonic data may arise.  There is 

no universal or panacea method that applies in all circumstances.  

Provided that a model’s assumptions apply, then that model is 

appropriate and different models may be required for different 

applications.  We begin by discussing the most straightforward 

assumption, that of an hedonic continuum.  This discussion will 

lead us to the search for a “drivers of liking” space, which gives 

rise to a consideration of internal and external preference 

mapping.  We then discuss preferential choice and liking 

unfolding before concluding. 

 

To help guide the reader through our exposition, Table 1 

provides a selection of recent papers in the applied sensory 

literature that have employed multivariate mapping of hedonic 

data.  These papers are classified according to the mapping 

techniques they employed.  It is worth noting that many of the 

applications involve Internal and External Preference Mapping 

and only a few involve Ideal Point Unfolding.  It is not the 

purpose of this paper to discuss each of these applications, but 

rather to consider the models that underlie them and to consider 

their process assumptions. 

 

 

 

 

 

 

 

 

 

Table 1.   Categorization of recent publications in the Journal 

of Sensory Studies and Food Quality and Preference utilizing 

multivariate mapping of hedonic data.  (IPM = Internal Preference 

Mapping, EPM = External Preference Mapping, IPU = Ideal Point 

Unfolding) 
 
 

  IPM EPM IPU 

(Séménou et al., 2007) ✓     

(Gambaro et al., 2007)   ✓   

(Meullenet et al., 2007)   ✓   

(Meullenet et al., 2008) ✓ ✓   

(Alves et al., 2008) ✓     

(Hein et al., 2008) ✓     

(Jaeger et al., 2008) ✓     

(Wajrock et al., 2008) ✓     

(Sveinsdóttir et al., 2009) ✓ ✓   

(Resano et al., 2009) ✓     

(Villanueva and Da Silva, 2009) ✓     

(Plaehn, 2009)   ✓   

(Tubbs et al., 2010) ✓ ✓   

(Varela et al., 2010) ✓     

(Dooley et al., 2010)   ✓   

(Worch et al., 2010)   ✓   

(Ares et al., 2011)   ✓   

(Zhang et al., 2011)   ✓   

(Rousseau et al., 2011)     ✓ 

(Paulsen et al., 2012) ✓     

(Symoneaux et al., 2012) ✓     

(Kraggerud et al., 2012)   ✓   

(Måge et al., 2012)   ✓   

(Menichelli et al., 2012)   ✓   

(Nunes et al., 2012)   ✓   

(Worch et al., 2012)   ✓   

(Jervis et al., 2012)     ✓ 

(van de Velden et al., 2013)     ✓ 

(Worch and Ennis, in press)   ✓ ✓ 

 
 

 

The Hedonic or Utility Continuum 

 

When thinking about preference or liking data and how 

they arise, the simplest idea is that they derive from an hedonic 

continuum.  In the economics literature, this continuum is 

referred to as utility.  In this way, liking is treated like a sensory 

variable such as sweetness or sourness.  This approach will not 

lead to spatial representations of products and consumer ideals, 

and hence will not support multivariate mapping.  However, it 
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will allow us to quantify the degree of liking and conduct 

comparative statistical tests on the hedonic scale estimates.  

Assuming that liking ratings approximate perceived intensities 

on the underlying hedonic scale, a typical analysis involves an 

analysis of variance followed by multiple comparison tests to 

compare liking rating means.  Analysis of preferential choice 

often involves tests using the binomial distribution. 

 

These methods do not actually scale the data on the 

hedonic continuum, but models have been developed that do.  

For instance, suppose that in a forced choice preference test one 

product is preferred to another by 76% to 24%
1
.  A Thurstonian 

probabilistic model
2
 for the 2-Alternative Forced Choice method 

tells us that the scaled difference (d′) on the hedonic continuum 

is 1 in perceptual standard deviation (δ) units as illustrated in 

Figure 1.  This figure is the simplest form of visual 

representation of the data.  If the sample size had been 100, the 

variance of this estimate would be 0.038, and it would be 0.019 if 

the sample size was 200.  These scale mean and variance 

estimates can be found using published tables (Bi et al., 1997; Bi, 

2006; Ennis et al., 2011) or available software (Ennis, 2003; 

Christensen, 2011).  Similarly, if liking ratings on a category 

scale for the same products are obtained, one can estimate the 

value of d′ and its variance (Dorfman and Alf, 1969).  Rating 

means or scaling estimates of utility are often modeled as a 

function of hypothesized explanatory variables using multiple 

regression (McCullagh and Nelder, 1989; Myers, 1990). 

 
Figure 1.   Illustration of the scaled difference between two 

products on an hedonic continuum based on preferential choice. 

 

In order to predict choice data, such as preferential 

choice or first choice among multiple alternatives based on 

utility, a common practice is to use logistic regression (Hosmer 

and Lemeshow, 2000).  This method has become extremely 

popular in market research, economics and public health where 

the goal is often to discover explanatory variables that drive a 

choice outcome.  The attractiveness of the logistic model is that it 

takes a closed form (which means that there are no integrals to 

evaluate).  The difference in utility between two items, u, can be 

related to preference using the function e
u
/(1+e

u
) where u is often 

                                                 
1
 Controlled tests such as these may only have a tenuous 

connection to real-life experience.  
2
 See Lee and O’Mahony (2007) for a recent review of 

Thurstonian scaling.   

expressed as a linear function of variables driving utility
3
.  It can 

be seen that if u is large, meaning that the first product has a 

much larger utility than the second, the preference probability 

will tend towards 1.  If the opposite occurs, it will tend towards 

zero.  When u = 0, the probability will be 0.5.  As discussed 

above for liking, the logistic model assumes an hedonic or utility 

continuum when modeling preference between a pair of items or 

first choice among a larger set.  The popularity of the logistic 

model seems largely dependent on the ease of computing the 

model parameters, rather than having a compelling process 

model account, although it can be derived under an assumption 

that the utility random variables are double exponentially 

distributed rather than normally distributed (Train, 2003). 

 

Models based on scaling items on an hedonic or utility 

continuum do not give a very satisfying account of how hedonic 

data arise.  There are no receptors on the tongue for liking (as 

there are for sweetness or bitterness) that might help to justify the 

assumption of a hedonic continuum
4
.  Liking or utility are better 

thought of as arising from a comparison of an immediate 

experience (such as tasting a product) with a reference or ideal 

expectation developed from past experience.  This idea was 

provided by Coombs (1950) when he suggested that such 

comparisons were the reason we see single peak preference 

functions.  As a product moves away from a consumer’s ideal 

reference point in any direction in a drivers of liking space, the 

consumer’s appreciation for that product will decrease.  See 

Figure 2. 

 
Figure 2.   Hypothesized relationship between liking and a 

sensory attribute, based on distance to an ideal point. 

 

                                                 
3
 A similar approach is used in conjoint analysis (Luce and 

Tukey, 1964; Green and Rao, 1971; Green and Srinivasan, 

1978), which is widely used in sensory science (e.g. Jervis et al. 

2012).  Since this paper focuses on multivariate mapping, we will 

not discuss conjoint analysis further – we instead recommend 

(Orme 2006) for a review. 
4
 For example, a molecular model for sweet taste perception 

would justify a sweetness continuum based on a concentration-

dependent function which also depends on receptor and 

transducer binding constants (Black and Leff, 1983; Ennis, 

1991).   
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This way of thinking allows us to capture satiety effects 

in a parsimonious manner because the response is primarily 

driven by distance.  If we were required to produce the same 

single peak preference functions using linear regression, the 

complexity and number of parameters required would be more 

extensive and we would need to specify the candidate 

explanatory variables in advance. 

 

The Drivers of Liking Space 

 

When thinking about differences among products that 

may drive consumer liking, it is helpful to visualize a space in 

which each possible product has a location.  In this space, each 

person’s ideal product may also be found, so that if we had 

access to this space, along with the locations of the actual 

product and individual ideal products, we could predict the 

appreciation of each person for each of the actual products 

according to how close or far the ideal products were to the 

actual products. 

 

In looking into such a space we might also notice that 

each product and each ideal does not exist as a point, but as a 

collection of similar points.  Some people clearly know what 

they like - their ideals are tightly clustered together; others are 

more uncertain – their ideal points form a larger cloud of points.    

It should be expected that individuals do not have absolute ideal 

points because they may vary from time to time depending on 

variables such as mood, time of day, and recent consumption 

experiences.  Some people may even have multiple ideal 

products that are triggered by the actual product tested (Worch 

and Ennis, in press), as might be the case with light-colored beers 

and dark-colored beers.  We might also see that products do not 

have an exactly determined position – they would sit in our space 

as clusters of varying sizes due to differences in the perception of 

these products by people at different moments. 

 

Since some people like similar things, collections of 

individual ideal point clusters may form what we generally 

describe as market segments.  These segments may have simple 

demographic markers, such as age or gender.  They may be more 

complex and derive from sensory experience, such as people who 

like sweet products and those who do not.  From the size of these 

collections of ideals or segments, we could assess the potential 

opportunity for a product with appeal to a particular segment.  If, 

in addition to knowing product and ideal locations, we could also 

describe this space using reliable information about product 

characteristics, the result would be a tool of immense value to 

product developers and marketers. The vision of creating and 

exploring this “drivers of liking” space has been a stimulus for 

considerable research and model development over many 

decades.  One attempt at accessing this space has been Internal 

Preference Mapping, which is the topic of the next section. 

 

Internal Preference Mapping, the Cube, and Satiety 

 

Figure 3 shows a series of products plotted in a cube-

like formation - within and around the cube a large number of 

points are plotted.  The products are placed on the vertices of the 

cube, at its face centers, and in the cube center.  The cluster of 

points represents the ideal points of individuals, and individual 

liking scores for the products depend on the distance that each 

point is from each product.  See Table 2 for a table of average 

liking ratings that might arise from such a formation
5
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.   Arrangement of products on the vertices, face 

centers and center of a cube containing individual ideal points. 

 

Table 2.    9-point rating means for 15 products paced on the 

vertices, face centers and center of a cube. 

 

Product position Liking mean 

1 (Corner) 5.48 

2 (Corner) 5.52 

3 (Corner) 5.45 

4 (Corner) 5.47 

5 (Corner) 5.39 

6 (Corner) 5.41 

7 (Corner) 5.29 

8 (Corner) 5.32 

9 (Center) 8.01 

10 (Face) 7.03 

11 (Face) 7.07 

12 (Face) 7.08 

13 (Face) 7.01 

14 (Face) 6.96 

15 (Face) 6.95 

                                                 
5
 In this case we assume that liking can be given as 1+8e

-d
 where 

d is the distance from the ideal point to a product.  The actual 

function we choose to relate distance to liking has little bearing 

on the results we share in this section – similar results will be 

found for any function that monotonically decreases from 9 to 1 

as the distance increases from 0.   

Product

Cube Center

Product

Bottom Face Center

Product

Top Face Center

Products

Face Centers

Products

Face Centers

Ideal points



Multivariate Mapping of Hedonics 

In this table, we see that the most highly rated product is 

the one in the center, which is closest on average to the 

individual ideals.  Next most liked are the face centers and finally 

the corners.  Suppose that we only had access to each 

individual’s liking rating for each product.  Would we be able to 

recover Figure 2? 

 

In practice, we do not know the underlying drivers of 

liking structure - all we have are liking ratings.  Thus we might 

apply one of the well-known methods for mapping data such as 

those given in Table 1.  One such method is called Internal 

Preference Mapping (IPM; Chang and Carroll, 1969; Carroll, 

1972).  In this method we assume that there are vectors 

representing individuals that point in each case in the direction of 

an individual’s ideal.  This method is essentially based on a 

method called biplotting, originally introduced by Gabriel 

(1971). Gabriel’s interest was in representing the rows and 

columns of a matrix - the “bi” of biplotting refers to the two-

dimensional row and column structure of the data matrix. 

 

In the case of the cube, we know the underlying 

ideal/product structure in the drivers of liking space and it is 

instructive to see how IPM recovers that structure.  Figure 4 

shows the result of applying IPM to the data summarized in 

Table 2.  Based on the liking data, the first three principal 

components of the vector model are given in Figure 4.  In Figure 

4 we can see that the method badly distorts the cube and in fact, 

there is very little resemblance to the cubic structure at all.  

Because the model only has ideal directions to work with, the 

most highly liked product (the one in the center of the cube) is 

forced out of the cube and forms the highest point on what 

appears to be a liking dimension with the lower rated products at 

the vertices suppressed into the base. Note also that the model 

pushes the vertex products and face center products together in 

pairs – these pairings do not exist in the original cubic 

representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.  A PCA representation of data summarized in Table 2. 

 

From Figure 4 it is clear that IPM has failed to recover the 

original cubic spatial representation, even though the model fit is 

quite good (83% of the variance is explained by the first three 

principal components.)  If we add a fourth dimension, which 

does not exist in the cubic representation, the model fit increases 

to 89% - an experimenter may choose that solution and be misled 

by it.  But a reasonable question to ask is:  How do we know that 

a representation like the cube would ever occur?  Is it not 

possible that IPM captures a reality in which people make liking 

decisions on the basis of ideal directions, and that there are no 

ideal points?  For variables such as fuel efficiency or luxury in 

automobiles or off-taste in food, IPM may be a perfectly valid 

and useful model.  However, evidence for ideal points, rather 

than ideal directions, comes from satiety – it is possible to have 

too much or too little of many sensory attributes (such as 

sweetness, bitterness, and hardness) with optimum values found 

at intermediate levels.  

 

Experimental Evidence for Satiety 

 

Rousseau et al. (2011) investigated the effect of satiety 

on IPM when they reevaluated twenty-seven category appraisals 

conducted by Kraft Foods.  They compared IPM with an 

individual ideal point model capable of locating individual and 

product positions.  They found strong evidence that IPM extracts 

an hedonic direction among the first two principal components as 

anticipated by the theory presented earlier and as illustrated with 

the cube. 

 

Although IPM is a useful tool when its assumptions 

apply (Greenhoff and MacFie, 1994), the above results should 

give pause to any experimenter using IPM.  If that experimenter 

has reason to believe that the products being evaluated exhibit 

satiety on key attributes, then the IPM solution may be just as 

misleading to the experimenter as the distorted spatial 

representation of the cube shown in Figure 4.  How is the 

experimenter to know that the resulting map is untrustworthy if 

goodness of fit is not to be relied on?  We think that the best way 

to answer that question is to consider the processes that underlie 

the data creation, what is already known about the product 

category in question, and theories that can account for the type of 

processes that the experimenter thinks are at work.   

 

External Preference Mapping and Two Approaches to 

Product Mapping 

 

We next consider the basis for a commonly used 

method called External Preference Mapping
6
 (EPM; Carroll and 

Chang, 1970; Carroll, 1972; see also Greenhofff and MacFie, 

1994; McEwan, 1996).  Table 1 demonstrates that EPM is very 

popular within sensory - we now consider what assumptions 

support the model.  For this we consider that there are at least 

two ways of thinking about how products differ.  For example, 

for orange juice, one approach is to consider the sensory 

variables that drive differences such as pulpiness, sweetness, 

bitterness, and color.  A second way of thinking is to consider 

only the sensory variables that drive differences in hedonic 

scores or in preference judgments.  These variables could 

comprise the complete set of sensory variables that describe 

differences, but could also be a proper subset of those variables.  

                                                 
6
 Once again, the term “Preference” in EPM could easily have 

been replaced by “liking” or “hedonic”. 

Face Centers

Center Point

Corners
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Due to the availability of analyses based on linear algebra such 

as Principal Component Analysis (PCA), it is natural to develop 

mapping techniques based on these models.  These techniques 

quite successfully create maps from sensory profile data that 

represent sensory differences between products. 

 

Using a map that reflects sensory differences between 

products on a list of specified attributes, it is possible to estimate 

locations of individual ideal products using hedonic data.  

Generally these fitting techniques are based on regression using 

linear and/or quadratic terms – such techniques form the basis for 

EPM.  A philosophical limitation of this method, however, is that 

we must assume that the first two or three principal components 

of the sensory space are drivers of liking, and that the resulting 

maps are drivers of liking spaces.  This may not be true – some 

variables might not drive liking, and it is also possible that the 

experimenter did not account for all of the drivers of liking in the 

original sensory profiling.  See (MacKay, 2006) for a thorough 

criticism of EPM.  On the other hand, if an experimenter has a 

sophisticated understanding of the sensory drivers of liking for 

the product category, EPM may be appropriate.  It should be 

noted again that each model may have an application depending 

on whether the process assumptions are justified. 

 

To avoid the dilemma of not knowing the drivers of 

liking in advance, it would be preferable to derive the drivers of 

liking space directly from the hedonic data, if possible.  Such an 

approach has the advantage of implicitly using only those 

variables that have driven the hedonic responses.  Once we have 

created the drivers of liking space, the role of sensory profile data 

is to explain the dimensions of the drivers of liking space
7
. 

 

Unfolding 

 

The term “unfolding” comes from the idea of creating 

maps based on unidimensional data which can be probabilities, 

ratings, or ranks - these maps convey information about ideal and 

product locations.  This approach is made possible by realizing 

that preferential choice can be thought of as a comparison of two 

proximities to an ideal point, and that liking or other emotional 

responses can be viewed as measures of similarity between the 

items tested and an ideal.  In a natural setting where actual 

products are consumed, people may compare their present 

product experience with an idealized or expected product, the 

characteristics of which are built up from past experience.  The 

similarity model is built around the idea that the least liked 

products are furthest from the ideal at a particular moment.  

Response bias is also included in some models to account for 

high-raters and low-raters of the same perceived distance or 

proximity. 

Unfolding models have now been applied to many 

different types of data at both the aggregate level over many 

subjects and at the individual level.  These include liking, 

preference, satisfaction, purchase interest, applicability (of 

products and concepts), and complex variables such as 

                                                 
7
 Kahneman’s (2011) recently described System 1 (fast) and 

System 2 (slow) mental processes may be related to the 

generation of hedonic and descriptive responses, respectively. 

refreshing, moisturizing, and freshness (e.g. Ennis et al., 2013).  

To illustrate the ideas behind the method, we now discuss 

preferential choice and liking unfolding. 

 

Preferential Choice Unfolding 

 

Unfolding models for preferential choice among pairs of 

items have been studied extensively in the last sixty years.  When 

Coombs (1950) proposed the idea to compare two items to a 

reference point so as to produce a preference for one of them, the 

capability had not yet developed to consider that the items may 

vary from moment to moment and could be modeled as 

distributions.  He could not, therefore, explain inconsistent 

choice behavior.  This situation changed with the introduction of 

momentary percepts.  This idea was a Thurstonian concept, so 

we call these models Thurstonian probabilistic models.  We 

assume that, in the drivers of liking space described earlier, the 

items (products, concepts, individuals, consumer segments) can 

be represented as multivariate normal distributions on the 

variables describing this space.  In other words, this space does 

not necessarily contain a complete description of item 

differences, but only of those that drive preference.  The 

distributions are necessary in order to account for the numerous 

sources of noise associated with the percepts such as stimulus 

noise, peri-receptor noise and neural noise (Ennis and Mullen, 

1992a; Ennis, 2006). 

 

To model preferential choice data, Zinnes and Griggs 

(1974) assumed uncorrelated, equal variance, multivariate 

normal distributions for the items and a common ideal 

distribution.  They assumed that consumer ideals were randomly 

chosen from this latter distribution.  In this model it was assumed 

that a subject sampled each item independently and compared the 

resulting percepts with random values from an ideal distribution.  

An important characteristic of their model was that a separate 

ideal sampling was assumed for each of the items tested.  This is 

called independent sampling of the ideal distribution.  By way of 

contrast, dependent sampling would occur if each consumer used 

the same sample from the ideal distribution to compare with the 

independently sampled item percepts.  Using dependent 

sampling, DeSoete at al. (1986) developed the “Wandering Ideal 

Point” model which assumed fixed positions for the item points 

but distributions for the ideals.  Thus, their model is a mixture of 

deterministic and probabilistic components.  Finally, in a series 

of papers, a generalization of both of these models was achieved 

in which items and ideals were both treated as general 

multivariate normal distributions and dependent sampling was 

assumed (Mullen and Ennis, 1991; Ennis and Mullen, 1992b; 

Ennis, 1993; Ennis and Johnson, 1994).  The key factor leading 

to these developments was to apply theory on quadratic forms in 

normal variables to a comparison of distances
8
. 

                                                 
8
 This general preference model had other applications as well in 

difference testing (e.g. Ennis and Jesionka, 2011) since the same 

mathematical model was used to fit data from Torgerson’s 

method of triads.  This is because in Torgerson’s method a single 

item is compared to two possibly different items which has the 

same structure as preferential choice where an ideal is compared 

to two physical stimuli (Ennis and Mullen, 1992b).   
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These probabilistic unfolding models explain a number 

of experimentally observed but counterintuitive results.  For 

example, if A is preferred to B and B is preferred to C, then one 

might expect that A is preferred to C. But it has sometimes been 

found experimentally that C is preferred to A - some probabilistic 

unfolding models can predict this outcome.  A less extreme but 

still counter-intuitive case for preferential choice is given in 

Table 2.  Here there are five products, Current Product (CP), 

New Product (NP), Competitor 1 (C1), Competitor 2 (C2) and 

Competitor 3 (C3). 

 

Table 3.  Paired preference results which exhibit transitivity 

violations. 

A B % Prefer A % Prefer B 

C3 CP 50 50 

C1 CP 83 17 

C1 C3 78 22 

NP CP 58 42 

NP C1 24 76 

NP C2 23 77 

NP C3 57 43 

C2 C1 54 46 

C2 CP 73 27 

C2 C3 73 27 

 

 

The probabilities in Table 3 are population values.  It 

can be seen that C2 is preferred to C1 (54%:46%).  However, C1 

is preferred to CP by a larger margin (83%:17%) than C2 is 

preferred to CP (73%: 27%).   Figure 5 illustrates why this 

apparent paradox occurs using a probabilistic unfolding 

preference model. 

 

 
Figure 5.   Probabilistic representation of five products and an 

ideal as multivariate normal distributions which gave rise to the data of 

Table 3. 

 

Of the two drivers of preference variables, one of them 

(pulpiness) shows greater relative variance and hence has lower 

salience than the other (sweetness).  C2 does not differ from the 

ideal on the most salient dimension and shows greater overlap 

with the ideal.  However, when compared to CP, C2 cannot 

compete with CP for ideals that are low on pulpiness as well as 

C1 can.  The net effect is that C1 performs better than C2 when 

compared to CP, even though C2 is a more preferred product. 

 

Notwithstanding these theoretically interesting and 

valuable properties, probabilistic unfolding models for 

preferential choice have not had large impact in practice for three 

main reasons.  The first reason is the lack of data available to fit 

these models - data collection for pairwise item comparisons can 

be extremely expensive.  A second reason is their mathematical 

complexity compared to other models.  The third reason is that 

they do not provide explicit individual ideal point information 

which is necessary to connect the model results to external 

demographic and other consumer-relevant data. 

 

Unfolding Other Hedonic Data 

 

We now return to the mapping of hedonic data in 

general.  The history of multidimensional scaling, including 

unfolding, has been primarily a history of deterministic models in 

which items and subjects are treated as discrete points as opposed 

to distributions of momentary percepts.  This fact is mainly due 

to the mathematical complexity of probabilistic models, even 

though their advantages are well recognized by researchers in the 

field.  There may also be a lack of appreciation for the 

importance of stimulus variability which cannot be controlled 

easily in certain modalities, such as the chemical senses (Ennis, 

2006) - the deterministic perspective has led to difficulties in part 

because it is sometimes unrealistic to assume that perceptual 

variation does not exist.  Two glasses of orange juice are 

demonstrably never identical when people drink them as the 

physicochemical composition of both the beverages and the oral 

cavity vary from moment to moment.  And even if all this 

variation were somehow eliminated, there would still be 

variability in the neural mechanisms (e.g. White et al., 2000).  In 

fact, this neural noise may play a central role in information 

processing - see (Stein et al., 2005) for a recent review. 

 

Shepard (1962), and later  Kruskal (1964), introduced 

nonmetric multidimensional scaling in the early sixties.  Twenty 

five years later, Shepard still considered the problem as one 

involving a deterministic account of stimuli when he published 

on the relationship between similarity and distance, and on the 

form of the distance metric (Shepard, 1987)
9
.   

 

                                                 
9
 The difficulty that Shepard encountered was that for certain 

confusable stimuli, he could not explain why the distance metric 

was Euclidean and the gradient was Gaussian when he had 

expected them to be city-block/exponential decay.  These results 

were also found by Nosofsky (1986), who also approached the 

modeling effort deterministically.  The issue was resolved by 

considering a probabilistic account for these confusable stimuli 

(Ennis, 1988; Nosofsky, 1988; Shepard, 1988). 
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Busing and van Deun (2005) provided a clear and 

detailed account of the history of nonmetric unfolding using 

deterministic models and in particular they discuss attempts 

made over half a century to resolve the problem of degeneracies.  

A degenerate solution is an uninterpretable account of the data in 

which ideals and products are not intermixed when there is an 

expectation that they should be.  A degenerate solution is shown 

in Figure 6 for an experiment on breakfast items by Green and 

Rao (1972).  Busing and his colleagues have contributed 

significantly to the development of deterministic unfolding 

models and have made important progress in solving the 

degeneracy problem for deterministic models (Busing et al., 

2005, 2010; van de Velden et al., 2013). 

 

 
 

Figure 6.   Degenerate solution for breakfast bread rating data 

(Green and Rao, 1972), reproduced with permission from Busing and 

van Deun (2005).  Breakfast bread plotting codes: TP - Toast pop-up; 

BTJ - Buttered toast and jelly; EMM - English muffin and margarine; 

CMB - Corn muffin and butter; BMM - Blueberry muffin and 

margarine; CT - Cinnamon toast; HRB - Hard rolls and butter; TMd - 

Toast and marmalade; BT - Buttered toast; TMn - Toast and margarine; 

CB - Cinnamon bun; DP - Danish pastry; GD - Glazed donut; CC - 

Coffee cake; JD  - Jelly donut. 

 

To apply probabilistic multidimensional scaling to 

hedonic data, we think of an hedonic rating as reflecting a 

subjective probability that an actual product is similar to an ideal 

product, for the particular individual providing the response.  

This perspective allows us to make use of a multidimensional 

similarity model (Ennis et al., 1988; Ennis and Johnson, 1993).  

Unlike the three difficulties listed earlier for preferential choice, 

hedonic ratings are commonly available in applied settings 

because they are relatively inexpensive to obtain.  The similarity 

model has a closed form and is easy to compute, thus 

overcoming the second problem with probabilistic preferential 

choice models.  This model can also be used to obtain individual 

ideal point and product locations without either preprocessing or 

additional techniques to avoid degeneracies (Ennis, 2001; Ennis 

& Rousseau, 2004).  This location of individual ideal points 

represents an advance over unfolding methods that assume either 

a single ideal point or pre-specified ideal distributions (De Soete 

et al., 1986; MacKay et al., 1995; MacKay, 2001).  These 

individual ideal points are valuable as they can help to identify 

latent consumer segments (Ennis & Anderson, 2003).  See Figure 

7. 
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Figure 7.   A probabilistic unfolding model solution to the 

breakfast bread rating data of Green and Rao (1972).   

 

Figure 7 shows a best fitting two-dimensional 

probabilistic unfolding solution to the same rankings data (Green 

and Rao, 1972) that were used to create the degenerate solution 

in Figure 6 - this dataset is often used to test unfolding models 

(Busing and van Deun, 2005).  The solution is not degenerate 

and is similar to a quasi-metric unfolding solution provided by 

Kim et al., (1999).  This latter model was discussed by Busing 

and van Deun (2005) and was designed to encourage inter-

mixedness of items and subject ideals. 

 

Thus the problem of degeneracies in unfolding has now 

been solved using both deterministic and probabilistic 

techniques.  The process models underlying these techniques are 

the most satisfactory of those used in the multivariate mapping of 

hedonic data as they intrinsically accommodate both satiety and 

variability (MacKay, 2006).  The mathematical challenges these 

models posed have largely been solved, and future sensory 

research is likely to include increased use of these methods. For 

further discussion of probabilistic unfolding, and a comparison of 

probabilistic unfolding with both external and internal preference 

mapping, see (Meullenet et al., 2007). 

 

Conclusion 

 

Scientific models are based on certain, usually testable, 

assumptions.  With regard to mapping hedonic data, we 

encourage researchers to consider the processes by which their 

data arise.  In order to explain an experimental result such as 

satiety or the numerous counterintuitive results associated with 

preferences, we recommend that researchers consider the 

increased use of ideal point models that include parameters to 

account for perceptual variation.  In other situations where satiety 

does not arise, other methods such as hedonic scaling, IPM, or 

EPM may be appropriate and easier to use.  In concluding we 
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also note the importance of continued research into data 

acquisition methods that lead to data with higher ecologic 

validity.      
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