Technical Report: Unfolding

Before you unfold a fan, as shown in Figure 1, you can see a compressed set of images stretched out on a line from the center to the periphery. These images may appear as nothing more than ordered blotches. You can imagine what you might see when you unfold the fan, but almost certainly the real image will confound your imagination. Liking and other hedonic measures, expressed as ordered means, are like the blotches on an unopened fan. We will not know what the drivers of liking space looks like and how the items are arranged in it until we unfold the data.

In a previous paper, we reviewed some of the more common methods for generating spatial maps of hedonic data and considered the extent to which they are based on a well-defined process. We concluded that the use of a model based on the process that respondents use to generate hedonic data, rather than relying on models that contain no such process considerations, is important to obtaining a meaningful interpretation of hedonic data. In addition, by following a process-based approach, researchers can evolve their thinking about what their data means by testing and improving their models. One of our recommendations was to consider ideal point ideas in hedonic models, particularly those that incorporate uncertainty into the location of items and ideals.

This technical report appears as:
Ennis, D. M. (2014). Unfolding. IFPress, 17(3) 3-4.

Colleagues can download this technical report here:

Not a Colleague? Click here to join for free!

Upcoming Webinar

September 21, 2017

Large TURF Problems: Finding Custom Solutions


Announcing the release of the 2016 Webinar Series Package!

Offered at a discounted rate of 50% off regular price, this package contains recordings of all four webinars offered during the 2016 Quarterly Webinar Series.

Create Your Own Webinar Package


Webinar calendar


Become a Colleague!

Join now to gain access to our technical reports, presentations, and more!

Click here to login or join.

Student Award

Now accepting applications for the
2017 Institute for Perception Student Award

site search