Abstract:
Multivariate analyses are commonly used to study differences among items in a
multidimensional space and to relate these findings to hedonic assessments of the
same items. But there are numerous methods in use and the purpose of this article
is to review these methods from a process standpoint. Specifically, this article considers
the process assumptions behind several of the popular methods for multivariate
mapping of hedonic data and argues that experimenters should consider
how their data arise so that they can correctly interpret their findings. Among the
methods considered in this article are models based on the hedonic continuum,
internal and external preference mapping, and deterministic and probabilistic
unfolding of preference and liking.
Ennis, D. M. and Ennis, J. M. Mapping hedonic data: A process perspective. Journal of Sensory Studies, 28, 324-334.
Colleagues can request this journal article here:
Mapping hedonic data: A process perspective
Not a Colleague? Click here to join for free.